
Journal of Computer Graphics Techniques
Triangle Reordering for Efficient Rendering in Complex Scenes

Vol. 6, No. 3, 2017
http://jcgt.org

Triangle Reordering for Efficient Rendering in
Complex Scenes

Songfang Han
Hong Kong UST

Pedro V. Sander
Hong Kong UST

Figure 1. Renderings of the four animated characters used in our results. The small images
visualize overdraw for several key frames in the animation (dark regions indicate overdraw).
Refer to the supplemental video for a full demonstration.

Abstract

We introduce an automatic approach for optimizing the triangle rendering order of animated
meshes with the objective of reducing overdraw while maintaining good post-transform vertex
cache efficiency. Our approach is based on prior methods designed for static meshes. We
propose an algorithm that clusters the space of viewpoints and key frames. For each cluster,
we generate a triangle order that exhibits satisfactory vertex cache efficiency and low overdraw.
Results show that our approach significantly improves overdraw throughout the entire animation
sequence while only requiring a few index buffers. We expect that this approach will be useful
for games and other real-time rendering applications that involve complex shading of articulated
characters.

1. Introduction

Advanced real-time rendering applications often involve rendering large animated
models using complex lighting and shading techniques. Depending on the relative
complexity of the rendered geometry and the fragment shading algorithm, the rendering
process is often bottlenecked at either the vertex shader or fragment shader stage.

38

http://jcgt.org

Journal of Computer Graphics Techniques
Triangle Reordering for Efficient Rendering in Complex Scenes

Vol. 6, No. 3, 2017
http://jcgt.org

Scenes that fall into one of these categories are referred to as vertex-bound and fill-
bound scenes, respectively. Approaches have been proposed to reorder the triangles of
a mesh so as to alleviate these bottlenecks.

In order to reduce vertex computation, the application can leverage the GPU’s post-
transform vertex-caching mechanism that stores the vertex shading output of a small
set of recently processed vertices. When processing a particular vertex, recomputation
can be avoided if the vertex has recently been processed by an adjacent triangle within
the same hardware unit and, thus, is still cached. This encourages a triangle order
with vertex reference locality (i.e., mesh triangles that share vertices should be close to
each other in the index buffer). The average cache miss ratio (ACMR) of a particular
triangle order measures the ratio between processed vertices and rendered triangles
for a given caching scheme (usually a FIFO scheme is assumed). Generating triangle
orders that reduce ACMR results is a significant improvement in rendering time for
heavily vertex-bound scenes.

Scenes may also have very complex lighting and shading techniques, resulting
in computationally intensive fragment shaders. In this case, reducing the number
of fragments that need to be shaded can significantly reduce rendering time. When
rasterizing triangles, GPUs apply early-Z culling, which performs depth testing prior to
fragment shading. Thus, if the triangles happen to be processed in perfect front-to-back
order, none of the occluded fragments will need to be shaded. In the worst case, when
rendering in back-to-front order, all of the fragments need to be shaded, even those
that are completely occluded by subsequent triangles. The overdraw ratio (OVR) of a
triangle order refers to the ratio of the total number of fragments that passed the depth
test and the number of visible fragments. An overdraw ratio of 1 is optimal and means
no overdraw.

It has been shown that for heavily vertex-bound scenes, ACMR is directly pro-
portional to rendering time, while for heavily fill-bound scenes, OVR is directly
proportional to rendering time [Sander et al. 2007]. An efficient triangle order has
both low ACMR and low OVR. In this paper, we propose a technique that finds a
compromise between these two objectives. However, unlike previous techniques, our
approach handles animated meshes. Since we are addressing keyframe animations,
where mesh connectivity does not change, ACMR is invariant to the animation. On
the other hand, since vertices change their relative positions over the course of the
animation, OVR can be significantly affected. Our algorithm generates a set of triangle
orders that minimizes OVR over the entire animation sequence, while still maintaining
a low ACMR.

39

http://jcgt.org

Journal of Computer Graphics Techniques
Triangle Reordering for Efficient Rendering in Complex Scenes

Vol. 6, No. 3, 2017
http://jcgt.org

2. Related Work

Vertex caching. Vertex-cache optimization has been extensively researched. Early
techniques made advances by reducing bandwidth and generating compressed data
structures, such as triangle strips [Akeley et al. 1990; Deering 1995; Chow 1997].
More recent methods simply utilize the transparent caching provided by modern GPUs
and just reorder the triangles without further compressing the index buffer [Hoppe
1999; Lin and Yu 2006; Sander et al. 2007]. These approaches directly target the
post-transform cache, where most of the vertex processing gain can be achieved. In
this paper, we do not propose new methods for improving cache efficiency, but rather
directly employ the method of Sander et al. [2007] to generate mesh patches with low
ACMR. We later use these patches in our algorithm to create orders that reduce OVR
over entire animation sequences.

Overdraw. A popular strategy to reduce overdraw of fill-bound scenes is to prime the
Z-buffer by rendering the geometry without writing to the framebuffer. On a subsequent
pass, the geometry is rendered again, but this time writing to the framebuffer and using
a less than or equal depth test. This approach ensures that only the visible fragments
are shaded. Note, however, that it doubles the amount of vertex processing, which
could be unacceptable in many scenarios. Alternative ways to reduce overdraw include
visibility sorting and occlusion culling [Airey 1990; Teller and Séquin 1991; Greene
et al. 1993]. Some techniques use hardware-based occlusion queries [Hillesland et al.
2002; Bittner et al. 2004; Govindaraju et al. 2005]. Most of these methods either
operate at coarser levels or require fine-granular visibility sorting. Nehab et al. [2006]
and Sander et al. [2007] take an alternative approach of creating a single index buffer
with a view-independent order that is optimized to reduce overdraw. The approach is
completely transparent to the application, which simply directly renders this pre-sorted
buffer. Chen et al. [2012] create a set of buffers that guarantee front-to-back order by
duplicating triangles in the index buffer and selectively drawing these triangles based
on a shader test so as to guarantee that the order of the rendered triangles is correct.
While these techniques provide good results for static meshes, they do not address
animated scenes. Our proposed technique addresses this problem by jointly clustering
sets of animation key frames and viewpoints that can share the same index buffer.

3. Our Approach

Our algorithm first partitions the mesh into patches that are locally optimized for
reduced ACMR. It then generates a set of index buffers that contain different orderings
of these patches. These new orders are optimized for reducing overdraw for different
keyframes and viewpoints.

40

http://jcgt.org

Journal of Computer Graphics Techniques
Triangle Reordering for Efficient Rendering in Complex Scenes

Vol. 6, No. 3, 2017
http://jcgt.org

3.1. Generating Cache-efficient Patches

We follow the fast linear clustering approach of Sander et al. [2007] to quickly generate
cache-optimized surface patches of triangles. The basic idea is to first optimize the
entire mesh to reduce ACMR and then break the output index buffer into contiguous
triangle sequences or patches. The approach uses a parameter λ to regulate the resulting
ACMR. Essentially, the method traverses the order one triangle at a time, and when
the ACMR of the current patch drops below λ, it adds a patch break and starts a new
patch on the following triangle. Refer to Sander et al. [2007] for additional details.
Lower values of λ result in lower overall ACMR; however, due to the smaller number
of patch breaks, this provides less flexibility for patch reordering to reduce overdraw.

3.2. Generating the Index Buffers

Next, we seek to reorder these cache-optimized patches for overdraw reduction.

Viewpoints. We assume that the animated model may be viewed from all directions.
We first generate a set V of 162 viewpoints that lie on a sphere enclosing the model to
represent the potential viewing directions (Figure 2). The viewpoints are computed
by subdividing an icosahedron as in Nehab et al. [2006]. We can increase the number

Figure 2. The points represent the vertices from the subdivided icosahedron that were used as
viewpoints during clustering. The colors identify their clusters.

41

http://jcgt.org

Journal of Computer Graphics Techniques
Triangle Reordering for Efficient Rendering in Complex Scenes

Vol. 6, No. 3, 2017
http://jcgt.org

1.04

1.08

1.12

1.16

1.2

Ganfaul Kachujin Maw Nightshade

O
V

R

12 views 42 views 162 views 642 views

Figure 3. Average overdraw for all 12 animations of all four models using a progressively
larger number of viewpoints (shown above the graph). The number of viewpoints trades off
preprocessing time and the overdraw result. Our results show that using 162 viewpoints is
sufficient and any additional gains in overdraw are marginal.

of viewpoints through further subdivision. More viewpoints will tend to give more
accurate results at the expense of additional preprocessing time. From our experiments,
162 viewpoints suffice, and the added processing required by using more viewpoints
does not improve the results significantly (less than 0.01 difference in overdraw; see
Figure 3). If the viewpoint distribution of the target application differs significantly, a
specialized set of viewpoints can be generated.

Framing. Some character animations involve significant global translations (e.g.,
a running character). Therefore, it is inefficient to use a single bounding sphere of
viewpoints that encapsulates the model in all potential frames or poses. In order to
maintain viewpoint consistency across frames while preserving a tight bounding sphere
of viewpoints, we compute the model’s bounding sphere in each frame and translate the
model such that its center matches that of the subdivided icosahedron of viewpoints.

Clustering. A particular view configuration consists of a viewpoint and a frame in
the animation which we seek to render. For each such configuration, we would like to
have an available index buffer that has low OVR for use at runtime. In our algorithm,

42

http://jcgt.org

Journal of Computer Graphics Techniques
Triangle Reordering for Efficient Rendering in Complex Scenes

Vol. 6, No. 3, 2017
http://jcgt.org

we will refer to each such configuration as a node. Therefore, we have a node for each
possible (keyframe, viewpoint) combination.

A single order that is suitable for all nodes (i.e., all animation keyframes when
viewed from any viewpoint) cannot satisfactorily reduce overdraw (see single cluster
results in Section 4). We instead create k node clusters that can share index buffers.
This results in a total of k index buffers. At runtime, the rendering algorithm picks the
appropriate one based on the current viewpoint and keyframe.

As input, we are given a set of viewpoints V and a set of keyframes F . Since our
approach must consider every possible keyframe viewed from every possible direction
for our example animations, the total number of nodes is in the thousands (|V | = 162,
20 ≤ |F | ≤ 135).

We seek to find a partitioning of all nodes that yields low overdraw with a small
number of index buffers. Our approach is based on k-means clustering [MacQueen
1967]. The algorithm alternates between two steps, one which assigns nodes to clusters,
and one which computes a new index buffer for each cluster.

Bootstrapping. The algorithm is initialized by choosing k initial viewpoints and
creating an initial index buffer for each of them by sorting the patches in front-to-back
order (i.e., by increasing distance between the patch centroid and the viewpoint). The
patch positions used for sorting the patches are the average positions over all of the
frames in the animation sequence. These k buffers represent our initial k clusters. The
choice of k and the initial viewpoints are discussed in the results section.

Step 1. Node assignment. Each node is assigned to the cluster whose index buffer
results in the lowest overdraw when used to render that keyframe from that particular
viewpoint. This is accomplished by rendering the scene using each of the k candidate
index buffers and using hardware occlusion queries to read back the overdraw results.

Step 2. Index buffer computation. For each cluster, we compute a new triangle order
with reduced average overdraw for all of its currently assigned nodes. We accomplish
this by creating an order that roughly sorts the patches from front-to-back. Sorting
the patches from front-to-back is straightforward if we only consider one node (i.e., a
single keyframe from a single viewpoint). However, in this case, the order must be
suitable for all the nodes assigned to the cluster. Therefore, we must define a measure
of distance for each patch that is applicable to all of these configurations and allows
us to sort the patches accordingly. We accomplish this by computing an integrated
distance d(p) for each patch over all of the nodes n in the current cluster c:

d(p) =
∑
n∈c

dist(p, vn, fn)

43

http://jcgt.org

Journal of Computer Graphics Techniques
Triangle Reordering for Efficient Rendering in Complex Scenes

Vol. 6, No. 3, 2017
http://jcgt.org

where vn and fn are the viewpoint and frame associated with n, respectively, and
dist(p, vn, fn) is the 3D Euclidean distance between vn and the patch p centroid at
frame fn.

We then create a single mostly front-to-back order for the cluster by sorting the
patches in increasing order based on d(p). The complete pseudocode for the algorithm
is given in Algorithm 1.

Algorithm 1
1: procedure CLUSTERNODES

2: Preprocessing:
3: F← load animation frames
4: V← generate representative viewpoints
5: N← generate nodes from F and V
6: P← generate vertex-cache optimized patches
7: for f ∈ F do
8: translateToOrigin(f)

9: Bootstrapping:
10: C ← generate initial viewpoints for each cluster c ∈ C
11: for p ∈ P do
12: averagePatch(p) compute average patch vertex positions over all frames

13: for c ∈ C do
14: IBc ← computeBuffer(c) sort average patches to generate index buffer

15: Node assignment:
16: for n ∈ N do
17: assignCluster(n) assign n to IBc that gives smallest overdraw

18: if no cluster assignment has changed then
19: end
20: Index buffer computation:
21: for c ∈ C do
22: for p ∈ P do
23: dp =

∑
n∈c dist(p, vn, fn)

24: computeIB(c) update IBc using the the patch distances computed above

25: goto Node assignment

Note that prior to computing an integrated distance, we have also considered the
simpler methods of either using the central viewpoint or the central frame of the
cluster or both, to generate an order that is hopefully suitable for all nodes. This could
reduce processing time significantly. However, it is not suitable for a large number of
situations in which the model animates. Consider, for instance, even a simple animation

44

http://jcgt.org

Journal of Computer Graphics Techniques
Triangle Reordering for Efficient Rendering in Complex Scenes

Vol. 6, No. 3, 2017
http://jcgt.org

where a model induces a large rotation to one of its components. Different views can
lead to considerably different orders among frames due to the varying orientations of
parts of the model. In general, finding a representative viewpoint or frame from which
to compute the order for an animated model is challenging, and even impossible in
some cases. For these reasons, we adopted the brute-force integrated distance solution,
which considers all frames and viewpoints equally.

3.3. Runtime Selection

When rendering the model, the target application has to choose between one of the
k index buffers. This is accomplished by using a lookup table indexed by keyframe
and viewpoint. Due to the framing described earlier, viewpoints used in preprocessing
are relative to the center of the model’s bounding sphere. During runtime selection,
we therefore need to compute the relative view direction in order to calculate the
corresponding viewpoint to be used. For simplicity, we index viewpoints based on
polar and azimuth angles (θ, φ) (we use values from the closest original viewpoint
when populating the table). While this distribution is less uniform than the subdivided
icosahedron, it is only used to store the index buffer IDs for the purpose of simplifying
the lookup at runtime. The time required for the lookup is negligible since it is only a
single lookup for the entire model. The lookup parameters f , θ, and φ are rounded to
the nearest valid parameter values.

4. Results

In this section, we present results of our approach. Our results use four models at
zero, one, two and three levels of Loop subdivision and undergoing a set of twelve
complex animations that have between 20 and 135 keyframes (see Figure 4). These
are representative of animated characters often found in games and other real-time
applications. Refer to the supplemental video for a demonstration of some of the

Figure 4. Representative animation frames with associated closeups of the four models that
we used in our results. The top row shows the original model, while the bottom two rows
shows the model after one and two levels of subdivision, respectively.

45

http://jcgt.org

Journal of Computer Graphics Techniques
Triangle Reordering for Efficient Rendering in Complex Scenes

Vol. 6, No. 3, 2017
http://jcgt.org

Figure 5. Processing times of our models. The number of iterations needed to reach conver-
gence is shown above each bar.

animations. Figure 5 shows preprocessing times for creating index buffers for each
animation (labeled A-L) as well as for a joint set of buffers that is optimized for all
animations. Having a larger number of patches (λ = 3) and a larger number of triangles
(subdivided models) both generally increase preprocessing time. A less predictable
factor in the preprocessing time is the number of iterations before the process reaches
convergence, which is anywhere between two and six in our results. To accelerate
preprocessing, we use render-to-texture and instancing, which enable us to draw a
frame from 162 viewpoints using a single draw call. An atomic counter is used to count
the number of fragments that are processed. Note that we did not heavily optimize
the preprocessing computation for speed, since this is done offline and only once after
modeling. We focused on reducing overdraw for higher runtime performance on pixel
bound scenes.

Choice of λ. As mentioned earlier, rendering time has been shown to be directly pro-
portional to ACMR for vertex-bound scenes, and OVR for pixel-bound scenes [Sander
et al. 2007]. The algorithm trades off these objectives by controlling the desired
ACMR through the λ parameter. Figure 6 shows how the overdraw ratio is affected
by the choice of λ. We have found that setting λ in the range of 0.75–0.95 provides a
good balance between ACMR and OVR objectives for our animated scenes. For the
remaining results in this paper, we use λ = 0.85. In addition, we also provide results
for λ = 3, which is the extreme case where vertex cache performance is not taken into
account and results are solely optimized for reduced overdraw. Note that even without
considering vertex caching, it is not always possible to reduce the overdraw to 1 unless
a huge number of clusters is used. As discussed below, we start getting diminishing
returns in overdraw when using more than five clusters.

46

http://jcgt.org

Journal of Computer Graphics Techniques
Triangle Reordering for Efficient Rendering in Complex Scenes

Vol. 6, No. 3, 2017
http://jcgt.org

1

1.04

1.08

1.12

1.16

1.2

A B C D E F

O
V

R

λ = 0.7 λ = 0.85 λ = 1 λ = 1.5 λ = 2 λ = 3

Figure 6. Adjusting λ provides a tradeoff between vertex caching and overdraw, as shown
here for the six animations of the Ganfaul model.

Choice of initial viewpoints. As mentioned before, the algorithm starts by choosing a
random viewpoint for each cluster in order to compute the initial index buffers. Due
to the greedy nature of the algorithm, we noticed a discrepancy in the range of 0.02
in overdraw due to the choice of initial random viewpoints (e.g., 1.17 ± 0.02 for the
Ganfaul model), which translate to marginal changes in rendering time. To accelerate
the k-means convergence speed, during our random viewpoint selection, we ensure
no two initial viewpoints are within a small distance threshold of each other. If this
threshold is violated, we reject the viewpoint and randomly sample it anew.

Choice of number of clusters. Figure 7 shows results for different number of clusters
for the Ganfaul model. Increasing the number of clusters reduces overdraw at the

1

1.08

1.16

1.24

1.32

1.4

1.48

A B C D E F

O
V

R

1 cluster 2 clusters 3 clusters 5 clusters 7 clusters 10 clusters

Figure 7. The number of clusters trades off memory (one index buffer per cluster) and
overdraw, as shown here for the six animations of the Ganfaul model.

47

http://jcgt.org

Journal of Computer Graphics Techniques
Triangle Reordering for Efficient Rendering in Complex Scenes

Vol. 6, No. 3, 2017
http://jcgt.org

expense of memory to store the additional index buffers. We have found that using
more than five clusters only yields modest ovedraw reduction for the models and
animations that we tested. Thus, for the remaining results in the paper, we use five
clusters.

Overall results. Table 1 shows the statistics of each of our four models at different
Loop subdivision levels (where41 ,42 denote one and two levels, respectively). Results
are averaged over all keyframes and over a set of 300 random viewpoints within a
radius three times that of the object’s bounding sphere. The original results use a single
index buffer that is optimized solely for reduced ACMR. It has a low memory footprint
since it only requires one buffer, however, it results in an order with high overdraw. The
tipsify results use the state-of-the-art algorithm for static scenes described in Sander
et al. [2007] applied to each individual frame. It reduces overdraw significantly, but
requires between 30-70 index buffers, depending on the animation, making its direct
use impractical. Our single set of results uses five clusters for each single animation,
thus requiring only five index buffers per animation, and our cluster-based approach
further reduces overdraw significantly for both λ = 0.85 and λ = 3. Our joint set of
results optimize for the same five clusters for all frames in all animations. It therefore
does slightly worse than the single animation results. As described earlier, the choice
of λ affects the resulting ACMR. With λ = 0.85, ACMR is kept under 0.9, while
for λ = 3, the order is solely optimized for overdraw, thus ACMR is significantly
sacrificed to achieve this additional reduction in overdraw. Figure 8 further breaks
down the results for each animation (labeled motion A-L). Note that the improvements
of our algorithm are consistent over a variety of different character animations and

Model # tris
Original Tipsify (λ = 0.85) Tipsify (λ = 3) Single (λ = 0.85) Single (λ = 3) Joint (λ = 0.85) Joint (λ = 3)

ACMR OVR ACMR OVR ACMR OVR ACMR OVR ACMR OVR ACMR OVR ACMR OVR

Ganfaul 13795 0.654 1.377 0.869 1.302 2.939 1.211 0.861 1.153 2.715 1.065 0.860 1.16624 2.698 1.0882
Ganfaul41 55180 0.630 1.384 0.847 1.280 2.854 1.210 0.844 1.127 2.860 1.045 0.849 1.14309 2.847 1.06849
Ganfaul42 220720 0.618 1.376 0.849 1.248 2.875 1.209 0.848 1.091 2.926 1.034 0.858 1.11241 2.925 1.05853
Kachujin 12608 0.642 1.326 0.903 1.185 2.896 1.125 0.891 1.087 2.617 1.030 0.861 1.09377 2.585 1.03728
Kachujin41 50432 0.621 1.325 0.845 1.174 2.790 1.125 0.840 1.069 2.810 1.017 0.841 1.07874 2.799 1.02456
Kachujin42 201728 0.613 1.317 0.856 1.153 2.821 1.124 0.854 1.047 2.905 1.014 0.854 1.05456 2.846 1.01887
Maw 13908 0.620 1.423 0.879 1.262 2.918 1.167 0.860 1.103 2.696 1.044 0.859 1.11198 2.678 1.0597
Maw41 55632 0.631 1.416 0.847 1.231 2.850 1.166 0.843 1.081 2.851 1.031 0.843 1.09187 2.847 1.04768
Maw42 222528 0.619 1.417 0.855 1.193 2.874 1.166 0.853 1.058 2.927 1.025 0.853 1.07327 2.922 1.04204
Nightshade 12996 0.639 1.336 0.862 1.189 2.930 1.120 0.854 1.077 2.643 1.030 0.854 1.08915 2.614 1.0437
Nightshade41 51984 0.622 1.343 0.848 1.154 2.832 1.120 0.844 1.053 2.826 1.024 0.844 1.06377 2.820 1.03697
Nightshade42 207936 0.611 1.333 0.859 1.136 2.859 1.119 0.857 1.038 2.916 1.020 0.857 1.05144 2.905 1.03426

Table 1. Average cache miss ratio (ACMR) and overdraw ratio (OVR) results for several
character animations. We contrast our method with a triangle order that only considers vertex
caching (original), and with the approach for static meshes of [Sander et al. 2007], which applies
the algorithm to each frame independently, resulting in 30-70 index buffers per animation
(tipsify). We present our results using a separate set of five index buffers per motion (single)
and with a joint set of five index buffers for all motions combined (joint).

48

http://jcgt.org

Journal of Computer Graphics Techniques
Triangle Reordering for Efficient Rendering in Complex Scenes

Vol. 6, No. 3, 2017
http://jcgt.org

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

A B C D E F G H I J K L

O
V
R

Ganfaul

original original(div1) original(div2) Tipsify(λ=0.85) Tipsify(λ=0.85,div1) Tipsify(λ=0.85,div2) Tipsify(λ=3) Tipsify(λ=3,div1)

Tipsify(λ=3,div2) Ours(λ=0.85) Ours(λ=0.85,div1) Ours(λ=0.85,div2) Ours(λ=3) Ours(λ=3,div1) Ours(λ=3,div2)

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

A B C D E F G H I J K L

O
V
R

Kachujin

original original(div1) original(div2) Tipsify(λ=0.85) Tipsify(λ=0.85,div1) Tipsify(λ=0.85,div2) Tipsify(λ=3) Tipsify(λ=3,div1)

Tipsify(λ=3,div2) Ours(λ=0.85) Ours(λ=0.85,div1) Ours(λ=0.85,div2) Ours(λ=3) Ours(λ=3,div1) Ours(λ=3,div2)

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

A B C D E F G H I J K L

O
V
R

Maw

original original(div1) original(div2) Tipsify(λ=0.85) Tipsify(λ=0.85,div1) Tipsify(λ=0.85,div2) Tipsify(λ=3) Tipsify(λ=3,div1)

Tipsify(λ=3,div2) Ours(λ=0.85) Ours(λ=0.85,div1) Ours(λ=0.85,div2) Ours(λ=3) Ours(λ=3,div1) Ours(λ=3,div2)

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

A B C D E F G H I J K L

O
V
R

Nightshade

original original(div1) original(div2) Tipsify(λ=0.85) Tipsify(λ=0.85,div1) Tipsify(λ=0.85,div2) Tipsify(λ=3) Tipsify(λ=3,div1)

Tipsify(λ=3,div2) Ours(λ=0.85) Ours(λ=0.85,div1) Ours(λ=0.85,div2) Ours(λ=3) Ours(λ=3,div1) Ours(λ=3,div2)

Figure 8. Average overdraw ratio for different animations of the four models from Table 1.

brings the overdraw ratio very close to the optimal value of 1. Also note that as the
subdivision level increases, the ACMR stays steady at approximately 0.85 while the
overdraw ratio tends to decrease. Since we use λ = 0.85, clearly we should not see
a significant change in ACMR, and the patches will have roughly the same number
of triangles. However, since the subdivided meshes have higher resolution, the added
granularity given to the ordering algorithm allows it to further decrease the overdraw
ratio.

49

http://jcgt.org

Journal of Computer Graphics Techniques
Triangle Reordering for Efficient Rendering in Complex Scenes

Vol. 6, No. 3, 2017
http://jcgt.org

Rendering times. We conducted experiments to verify the dependency between OVR
and rendering time [Sander et al. 2007]. We used the Kachujin model with λ = 0.85

in a heavily pixel-bound scene. We noticed the improvement in rendering time closely
matched the improvement in OVR (∼18-20%). With λ = 3, we achieved a slightly
larger improvement, proportional to the change in OVR. With an inexpensive shader
that simply outputs the color, the improvement was less significant (∼10%).

5. Conclusion

We introduced a new algorithm to efficiently reorder triangles of animated models in
order to reduce overdraw. To our knowledge, this is the first technique that generates
such optimized triangle orders for animations. By using a small number of index
buffers, the proposed approach produces triangle orders that have significantly lower
overdraw even when compared to techniques that are optimized for static meshes.
We presented results that balance vertex cache and overdraw performance as well as
results that are solely optimized for reduced overdraw. The approach is very general
and widely applicable to arbitrary animations in a variety of real-time rendering
applications. For future work, we are exploring using a larger number of orderings that
can guarantee front-to-back rendering, thus also making the approach more accurate
for applications that require semi-transparent or translucent rendering.

Acknowledgments

This work was partly supported by Hong Kong GRF grants #619509 and #618513.
The models used are from Mixamo.

References

AIREY, J. M. 1990. Increasing update rates in the building walkthrough system
with automatic model-space subdivision and potentially visible set calculations.
PhD thesis, UNC-CH. URL: http://www.cs.unc.edu/xcms/wpfiles/
dissertations/airey.pdf. 40

AKELEY, K., HAEBERLI, P., AND BURNS, D., 1990. The tomesh.c program. Avail-
able on SGI computers and developers toolbox CD. 40

BITTNER, J., WIMMER, M., PIRINGER, H., AND PURGATHOFER, W. 2004. Co-
herent hierarchical culling: Hardware occlusion queries made useful. Computer
Graphics Forum 23, 3, 615–624. URL: https://www.cg.tuwien.ac.at/
research/vr/chcull. 40

50

http://jcgt.org
http://www.cs.unc.edu/xcms/wpfiles/dissertations/airey.pdf
http://www.cs.unc.edu/xcms/wpfiles/dissertations/airey.pdf
https://www.cg.tuwien.ac.at/research/vr/chcull
https://www.cg.tuwien.ac.at/research/vr/chcull

Journal of Computer Graphics Techniques
Triangle Reordering for Efficient Rendering in Complex Scenes

Vol. 6, No. 3, 2017
http://jcgt.org

CHEN, G., SANDER, P. V., NEHAB, D., YANG, L., AND HU, L. 2012. Depth-
presorted triangle lists. ACM Transactions on Graphics 31, 6, 160:1–160:9. URL:
http://w3.impa.br/˜diego/publications/ChenEtAl12.pdf. 40

CHOW, M. M. 1997. Optimized geometry compression for real-time rendering. In
Visualization’97, IEEE Computer Society, Los Alamitos, CA, 347–354, 559. URL:
https://doi.org/10.1109/VISUAL.1997.663902. 40

DEERING, M. 1995. Geometry compression. In ACM SIGGRAPH ’95, ACM, New
York, NY, 13–20. URL: https://doi.org/10.1145/218380.218391.
40

GOVINDARAJU, N. K., HENSON, M., LIN, M. C., AND MANOCHA, D. 2005.
Interactive visibility ordering and transparency computations among geometric
primitives in complex environments. In I3D, ACM, New York, NY, 49–56. URL:
https://doi.org/10.1145/1053427.1053435. 40

GREENE, N., KASS, M., AND MILLER, G. 1993. Hierarchical z-buffer visibility.
In ACM SIGGRAPH ’93, ACM, New York, NY, 231–238. URL: https://doi.
org/10.1145/166117.166147. 40

HILLESLAND, K., SALOMON, B., LASTRA, A., AND MANOCHA, D. 2002. Fast
and simple occlusion culling using hardware-based depth queries. Tech. Rep.
TR02-039, Department of Computer Science, UNC-CH, Chapel Hil, NC. URL:
http://www.cs.unc.edu/techreports/02-039.pdf. 40

HOPPE, H. 1999. Optimization of mesh locality for transparent vertex caching. In
ACM SIGGRAPH ’99, ACM, New York, NY, 269–276. URL: http://hhoppe.
com/tvc.pdf. 40

LIN, G., AND YU, T. P.-Y. 2006. An improved vertex caching scheme for 3D mesh
rendering. TVCG 12, 4, 640–648. URL: https://doi.org/10.1109/TVCG.
2006.59. 40

MACQUEEN, J. 1967. Some methods for classification and analysis of multivariate
observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Volume 1: Statistics, University of California, Berke-
ley, CA, 281–297. URL: https://projecteuclid.org/euclid.bsmsp/
1200512992. 43

NEHAB, D., BARCZAK, J., AND SANDER, P. V. 2006. Triangle order optimization
for graphics hardware computation culling. In I3D, ACM, New York, NY, 207–211.
40, 41

51

http://jcgt.org
http://w3.impa.br/~diego/publications/ChenEtAl12.pdf
https://doi.org/10.1109/VISUAL.1997.663902
https://doi.org/10.1145/218380.218391
https://doi.org/10.1145/1053427.1053435
https://doi.org/10.1145/166117.166147
https://doi.org/10.1145/166117.166147
http://www.cs.unc.edu/techreports/02-039.pdf
http://hhoppe.com/tvc.pdf
http://hhoppe.com/tvc.pdf
https://doi.org/10.1109/TVCG.2006.59
https://doi.org/10.1109/TVCG.2006.59
https://projecteuclid.org/euclid.bsmsp/1200512992
https://projecteuclid.org/euclid.bsmsp/1200512992

Journal of Computer Graphics Techniques
Triangle Reordering for Efficient Rendering in Complex Scenes

Vol. 6, No. 3, 2017
http://jcgt.org

SANDER, P. V., NEHAB, D., AND BARCZAK, J. 2007. Fast triangle reordering
for vertex locality and reduced overdraw. ACM Transactions on Graphics 26,
3, 89. URL: http://gfx.cs.princeton.edu/pubs/Sander_2007_
>ETR. 39, 40, 41, 46, 48, 50

TELLER, S. J., AND SÉQUIN, C. H. 1991. Visibility preprocessing for interactive
walkthroughs. In ACM SIGGRAPH ’91, ACM, New York, 61–70. URL: https:
//doi.org/10.1145/127719.122725. 40

6. Author Contact Information

Songfang Han
HongKong UST
Clear Water Bay
Kowloon,HongKong
shanaf@connect.ust.hk

Pedro V. Sander
HongKong UST
Clear Water Bay
Kowloon,HongKong
psander@cse.ust.hk

Songfang Han, Pedro V. Sander, Triangle Reordering for Efficient Rendering in Com-
plex Scenes, Journal of Computer Graphics Techniques (JCGT), vol. 6, no. 3, 38–52,
2017
http://jcgt.org/published/0006/03/03/

Received: 2016-11-07
Recommended: 2017-03-10 Corresponding Editor: Eric Haines
Published: 2017-09-28 Editor-in-Chief: Marc Olano

c© 2017 Songfang Han, Pedro V. Sander (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-
ND 3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The
Authors further grant permission for reuse of images and text from the first page of the
Work, provided that the reuse is for the purpose of promoting and/or summarizing the
Work in scholarly venues and that any reuse is accompanied by a scientific citation to
the Work.

52

http://jcgt.org
http://gfx.cs.princeton.edu/pubs/Sander_2007_>ETR
http://gfx.cs.princeton.edu/pubs/Sander_2007_>ETR
https://doi.org/10.1145/127719.122725
https://doi.org/10.1145/127719.122725
mailto:shanaf@connect.ust.hk
mailto:psander@cse.ust.hk
http://jcgt.org/published/0006/03/03/
http://creativecommons.org/licenses/by-nd/3.0/

