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We present a new approach for rendering all triangles in a model in front-to-back order without the need
for sorting at runtime. The method can be used for rendering order-dependent transparency effects, or to
minimize overdraw, for example. The key distinguishing component in the approach is its negligible runtime
cost and therefore the ease with which it can be incorporated into rendering engines. More specifically, given
a viewpoint, the runtime simply selects a presorted triangle list, which we call in-depth buffers, to be rendered
at full speed. These in-depth buffers are even optimized for post-transform vertex cache efficiency. The result
is unmatched in front-to-back rendering performance. The difficulty is computing the smallest set of in-depth
buffers required. This reduces to a graph problem that we prove to be NP-hard. Nevertheless, we have found an
optimization heuristic that produces good results, particularly when visually imperceptible fragment ordering
mistakes are allowed.
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1 INTRODUCTION AND RELATEDWORK
One of the key features of the Z-buffer algorithm [Catmull 1974] is that it guarantees correct results
when rendering opaque geometry regardless of the order in which the fragments are generated.
Nevertheless, for performance reasons, it is still preferable to generate fragments front-to-back,
since this minimizes the number of fragments that are shaded unnecessarily and then overwritten
by fragments closer to the camera. In contrast, semi-transparent fragments must be composited
over each other in depth order for correct results [Porter and Duff 1984]. Real-time depth-sorting
is therefore a well studied problem in computer graphics, and several different approaches to the
problem have been developed over the years.

Inspired by the A-buffer [Carpenter 1984], several modifications of the rendering pipeline have
been proposed that collect and sort fragments before blending [Aila et al. 2003; Jouppi and Chang
1999; Liu et al. 2010; Mark and Proudfoot 2001; Wittenbrink 2001]. More recently, programmable
graphics hardware has been used successfully to implement similar ideas in software [Knowles
et al. 2012, 2014; Lefebvre et al. 2014; Lipowski 2010; Maule et al. 2014; Patney et al. 2010; Peeper
2008; Vasilakis and Fudos 2012; Yang et al. 2010].
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One problem with these strategies is that they require an unbounded amount of memory. Early
screen-door transparency techniques, though approximate, did not suffer from this problem [Foley
et al. 1990; Mulder et al. 1998]. Newer algorithms perform even better on a limited memory
budget [Enderton et al. 2010; Laine and Karras 2011; Maule et al. 2013; Salvi et al. 2011]. Some of
these methods are particularly well suited for scenes with high depth-complexities [Callahan et al.
2005; Jansen and Bavoil 2010; Kim and Neumann 2001; Sintorn and Assarsson 2008, 2009].
Another alternative is to use the Z-buffer to progressively peel depth layers in order [Everitt

2001; Mammen 1989; Thibieroz 2008]. A variety of techniques have been developed that reduce the
number of rendering passes required to peel all layers [Bavoil et al. 2007; Bavoil and Myers 2008;
Carr et al. 2008; Huang et al. 2010; Liu et al. 2006, 2009; Wexler et al. 2005].

Our work belongs to yet a different category that attempts to precompute the depth order [Goad
1982; Govindaraju et al. 2004; Newell et al. 1972; Schumacker et al. 1969]. In particular, we attempt
to all but eliminate runtime involvement of the CPU and GPU in depth-sorting [Chen et al. 2012;
Han and Sander 2016; Nehab et al. 2006; Sander et al. 2007]. The key observation in this last set of
techniques is that a single triangle list can be effectively depth-sorted when seen from an entire
range of viewpoints.

Chen et al. [2012] start by dividing the sphere of viewpoints into a set of compact regions. Then,
given a static mesh, they produce, for each view region, a single triangle list. The list merges all
triangle orders needed to render the mesh in depth-sorted order from any viewpoint in that region.
The trick is to include more than one instance of selected triangles in different positions in the list,
each associated to a plane test. At runtime, the viewpoint is tested against the plane and the result
is used to decide whether to output each triangle instance. This way, each triangle is rendered
exactly once, and the resulting triangle list is depth-sorted correctly.

In our work, we do away with the repeated triangles and plane tests. Instead, we try to identify the
regions on the sphere that can use exactly the same triangle list. We call such triangle lists in-depth
buffers. The runtime simply selects the in-depth buffer appropriate for the current viewpoint and
renders it at full speed. This simplifies the task of integrating our technique into existing rendering
engines. Moreover, it reduces the amount of memory needed to store the buffers, as there is no
duplication and no planes to test against.

Identifying the partition of the viewpoint sphere that results in the smallest number of in-depth
buffers leads to an interesting graph problem that we prove to be NP-hard. On the other hand, once
setup, this graph problem is purely combinatorial, whereas the optimization problem formulated
by Chen et al. [2012] is geometric and therefore harder to deal with robustly. We propose a heuristic
that results in an small number of in-depth buffers for a variety of typical 3D models, particularly
when imperceptible fragment ordering errors are allowed. Finally, we propose a constrained vertex
locality optimization that reorders the triangles in each buffer to maximize the effectiveness of the
post-transform vertex cache.

In summary, we propose a high-quality approximate depth-sorting algorithm for static meshes
that incurs essentially no runtime cost. Since we provide source-code for the preprocessing stage,
and since there is no runtime component, we believe our method will be immediately useful in a
variety of applications.

2 VIEW-DEPENDENT PARTIAL ORDERS
We start by partitioning the view space into a set V of viewpoints, view triangles, or view regions
which are representative of regions from where the model can be viewed. We then associate a
partial order graph to each v ∈ V that represents the occlusion relationships between all triangles
in the mesh when viewed from v . These partial order graphs will be the input to the clustering
algorithm described in section 3. We will next elaborate on each of these steps.
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P[0] P[1] P[2] P[3]

Fig. 1. A icosahedron with zero to three levels of subdivision. The resulting vertices can be used as a set
of uniform viewpoints V surrounding the model. The number of subdivisions provides a tradeoff between
quality of the orders and processing time and memory.

T [n] S[n, 0] S[n, 1] S[n, 2]

Fig. 2. View trianglesT [n] consider the continuous space of viewpoints within each triangle of the subdivided
icosahedron. For sampled view triangles S[n,m], we performm additional levels of sudivision and use the
resulting vertices as the viewpoints.

2.1 Partitioning the view space
Discrete viewpoints. One alternative is to use the vertices of a subdivided icosahedron as the

set V . Figure 1 shows the subdivided icosahedra P[n], where n denotes the number of midpoint
subdivisions used. When n is small, this approach is more appropriate for overdraw reduction
techniques, since they are fairly tolerant to errors in depth-sorting [Han and Sander 2016; Nehab
et al. 2006]. Order-dependent transparency effects, however, require accurate results even away
from the viewpoints in V in order to avoid visible rendering errors. Unfortunately, when n is large,
this method becomes prohibitive in terms of memory and preprocessing time.

View triangles and view regions. We also explored using the setT [n] of triangles of the subdivided
icosahedron as set V . In this case, the partial order graph associated to each triangle considers the
continuous space of all viewpoints inside the triangle. We have found that, although this virtually
eliminates ordering errors, the resulting partial orders are dense enough to prevent significant
sharing of in-depth buffers between different triangles. We also tried using the set of all viewpoints
in 3D that project to each triangle of the subdivided icosahedron as set V . Although this eliminates
rendering errors, it is even more restrictive.

Sampled view triangles. We then found a compromise between discrete viewpoints, which cause
too many rendering artifacts, and the view triangles and regions, which severely restrict clustering.
The idea is to sample viewpoints inside each triangle and associate to the triangle the union of all
ordering relations found for the viewpoints sampled from it. Figure 2 illustrates the samples used
in this approach for different subdivision levels of a sampled view triangle S[n,m]. Here, n denotes
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the number of subdivisions used to generate the triangles, andm denotes the number of additional
subdivisions used to define the sample points within the triangle. Note that several of the samples lie
on the boundary of the view triangle and thus are shared with the neighboring view triangle, unlike
with viewpoints where each v ∈ V is independent. This approach of effectively “preclustering”
with shared boundary samples avoids large gaps in the view space. It also significantly reduces the
clustering time. Overall, it yields satisfactory results for sufficiently large values of n andm.

2.2 Generating the occlusion graph
We start from a triangle mesh consisting of non-intersecting triangles T , and a set of view parti-
tions V , which can be viewpoints, view triangles, view regions, or sampled view triangles.
Like Chen et al. [2012], we explicitly add backfacing duplicates of each original mesh triangle

to T with the goal of making the partial order sparser. Since we render with hardware backface
culling enabled, only one instance of each triangle is rendered at runtime. (Naturally, triangles that
are always backfacing from the relevant view partitions are removed after the clustering stage.)
For each view partition v in V , we generate a directed acyclic graph Gv (Ev ,T ) over the set of

triangles T in the following way. A directed edge (p,q) is included in Ev if and only if there exists
a ray emanating from a point in view partition v that intersects triangle p before intersecting
triangle q when both are front-facing. In other words, if any part of p occludes any part of q, when
seen from v .
To compute the graph edges, we first determine the occlusion region Oi→j for each pair of

triangles ti and tj . This occlusion region represents the partition of space where ti occludes tj [Chen
et al. 2012]. We then include an edge from ti to tj in Gv , if and only if any viewpoint within view
partition v intersects Oi→j .
To render all triangles in T in front-to-back order relative to v , it suffices to render them in

topological order relative toGv . Since Gv is acyclic, any depth-first-search over Gv produces such
an order.

Note that our clustering algorithm assumes that the input model does not contain any visibility
cycle in eachv ∈ V . If such a cycle exists, a preprocessing step can break it by splitting the offending
triangles.

3 VIEW CLUSTERING
Computing and storing one in-depth buffer for each viewpoint is, naturally, impractical in terms of
memory requirements. Our intuition suggests that it should be possible to render triangles in front-
to-back order relative to multiple viewpoints using the same order. To decide if two viewpoints v
and v ′ can share a single in-depth buffer this way, we check that the graph G {v,v ′ }(Ev ∪ Ev ′,T ),
formed by the union of edges in Gv and Gv ′ , is acyclic.

We can now precisely state the problem we wish to solve.
Find the partition P of the viewpoints in V , with the smallest number |P | of subsets,
such that, for each subset S in P , graph GS (ES ,T ) is acyclic, where ES =

⋃
v ∈S Ev is

the union of the edges Ev associated to each viewpoint v in subset S .
For lack of a standard name in the literature, we call this the view-clustering problem.

3.1 View clustering is NP-hard
As is common with such combinatorial graph problems, the view-clustering problem is NP-hard.
We can prove this by reducing the chromatic number problem to the view-clustering problem in
the following way. Let H (D,U ) be an undirected graph for which we want to obtain the chromatic
number χ (H ). Associate one of our viewpoints to each node in H (D,U ), i.e., our “viewpoints” setV
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equals the set of nodes U . Associate one of our triangles to each pair of nodes in H (D,U ), i.e.,
the “triangle” set T is the Cartesian product U ×U . Now, for each viewpoint v in V , associate a
graphGv (Ev ,T ) such that Ev contains a directed edge

(
(v,w), (w,v)

)
from (v,w) to (w,v), seen as

elements of T , if and only if D contains an undirected edge {v,w} between nodes v andw , seen as
elements ofU .
We claim that, if partition P of V is a solution to the view-clustering problem on the set of

graphsGv (Ev ,T ) we created from H (D,U ) as above, then |P | = χ (H ). To see this, note that if there
is an undirected edge {v,w} between nodes v and w of H (D,U ), no subset S in P can contains
both v and w . Otherwise, GS would contain, at least, the cycle (v,w) → (w,v) → (v,w). By the
pigeonhole principle, it follows that |P | ≥ χ (H ). On the other hand, assume we have any coloring
for H (D,U ), expressed as a partition Q ofU , and take any subset R in Q . Since no two vertices in R
are connected by an edge in D, all edges in Ev for v in R are of the form

(
(v,w), (w,v)

)
forw not

in R. This means that for all u,v in R, with u , v , sets Eu and Ev reference entirely disjoint sets of
vertices. There is no chance any cycle will be formed if we merge them. In other words, |P | ≤ |Q |.
Since χ (H ) is an example of coloring, it follows that |P | ≤ χ (H ) as well. This completes the proof
that |P | = χ (H ).

3.2 A heuristic for view clustering
We now propose an effective heuristic for the view-clustering problem. We proceed in two stages:
an initial clustering followed by a relaxation process.

The initial clustering. We start with one graph in each partition,

P0 =
{
{v}

�� v ∈ V
}
, (1)

and proceed iteratively. At each iteration, we try to form P (k+1) by merging two of the subsets S (k )i
and S (k )j in P (k ). That is, we set

P (k+1) =
{
S (k)i ∪ S (k)j

}
∪ Pk \

{
S (k)i , S

(k)
j

}
, i , j, (2)

if the resulting graph GS (k )
i ∪ S (k )

j

(
ES (k )

i
∪ ES (k )

j
, T

)
is acyclic.

The heuristic is in selecting the best pair of subsets to merge at each step. Recall our viewpoints
are spatially distributed on the sphere. This spatial distribution equips the set of viewpoints with a
neighboring relation that extends naturally to subsets of viewpoints, sets of subsets of viewpoints,
etc. For example, two subsets Si and S j are neighbors if there exist viewpoints u ∈ Si and v ∈ S j
that are spatial neighbors on the sphere. Our first heuristic decision is to only consider neighboring
subsets for merging. There are two desirable consequences of this choice. First, it brings down the
number of pairs considered for merging, from quadratic to linear on the number of subsets in the
current partition. This reduces the computational complexity of selecting the best pair. Second, each
partition defines a contiguous region on the sphere’s surface. This reduces the number switches
between different triangle lists when the viewpoint changes at runtime.

Our second heuristic decision relates to the order in which the subsets are merged. For that, we
keep a priority queue of subset pairs. At each iteration, the highest-priority pair is removed from
the queue and the graph that would be formed by merging the subsets is checked for cycles. If no
cycles are found, the subsets are indeed merged. This involves updating the neighboring pairs and
their priorities. If, on the other hand, merging the two subsets would create cycles, a new pair is
removed from the priority queue. We repeat this process until no pairs can be merged.

We have tried several different pair priority functions, all based on the associated edge sets

I = ES (k )
i

and J = ES (k )
j
. (3)
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For performance reasons, we favor priority functions that can be updated incrementally when
subsets are merged. These included maximizing |I ∩ J |, minimizing |I ∪ J | − |I ∩ J |, and finally
minimizing |I ∪ J |. This last alternative gave us the best results.

The relaxation process. After the initial clustering, we proceed to the relaxation process. At each
relaxation iteration, we select a random subset S from the current partition. The subset neighboring
relation defines a 1-ring and a 2-ring of subsets around S . The relaxation proceeds in two stages.
First, we try to move elements from the 1-ring out towards the 2-ring. Last, we try to move elements
from S out towards the 1-ring. The hope is that we will be left with an empty set S , thereby reducing
the number of subsets in the partition. Let us consider these stages in more detail.
Some viewpoints in the union of subsets of the 1-ring have neighboring subsets in the 2-ring.

Among these, some viewpoints can be moved to one of the neighboring subsets without creating
cycles. We select one of these viewpoints at random and make one of its allowed moves, also at
random. This requires us to update the neighboring relations, which we do incrementally. We
repeat this process until no viewpoint can be moved from the 1-ring to the 2-ring of S .

Now we look for viewpoints in S that have neighboring subsets in the 1-ring. Among these, some
can be moved to one of their neighboring subsets without creating cycles. We select one of these
viewpoints at random and make one of its allowed moves, also at random. This again requires us to
update the neighboring relations, which we do incrementally. Finally, we repeat this process until
no viewpoint can be moved from S to any subset in its 1-ring.

At some point, relaxing all subsets does not reduce the number of subsets in the partition. If this
happens multiple times in sequence, we abort the process and return the results. In our experiments,
we abort after 5–10 unfruitful iterations.

4 CONSTRAINED VERTEX CACHE OPTIMIZATION
Finally, we reorder the in-depth buffers of all partitions to maximize vertex locality and leverage
the GPU vertex cache. To do so, we seek to minimize the average cache miss ratio (ACMR), which
measures the ratio between processed vertices and rendered triangles. We assume a FIFO caching
scheme, which is the traditional caching approach and leads to good results on modern hardware.

Optimizing an input triangle mesh to minimize the number of cache misses in is a well-studied
problem in computer graphics. A number of heuristics have been proposed (e.g., [Bogomjakov and
Gotsman 2002; Hoppe 1999; Lin and Yu 2006; Sander et al. 2007]). Most heuristics follow the same
high-level structure:
(1) Select an (often random) unprocessed triangle on the mesh and add it to the list;
(2) Process and add nearby triangles following the proposed local heuristic until a dead end is

reached;
(3) Repeat steps 1–2 until all triangles have been added.
This greedy approach, coupled with a carefully crafted order in which to pick triangles or vertices

to process, achieves results that are close to the theoretical lower bound ACMR of 0.5 for many
models. Unfortunately, our triangle lists cannot use these methods directly since reordering the
mesh triangles arbitrarily would violate our partial ordering. Instead, we propose an adaptation
that restricts the set of triangles that can be processed at each stage of the algorithm to ensure
that the resulting order still adheres to the partial order graph. More specifically, for steps 1 and 2,
we only consider triangles which have no remaining unprocessed ancestors in the partial order
graph. Once a triangle is processed, it is removed from the partial order graph. Triangles that have
ancestors are therefore skipped to be processed when revisited at a later point.
This general adaptation is applicable to many existing methods. We applied it to the tipsify

approach of Sander et al. [2007] due to its simplicity, availability of source-code, and efficiency. As
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evidenced in the results section, the constrained order has approximately a 0.7–0.8 ACMR, which is
inferior to the original unconstrained results (0.6–0.7 ACMR), but far better than not using orders
with vertex locality, which can be close to a 3.0 ACMR.

5 ORDER UPSAMPLING
To improve processing speed, we explored a strategy where we upsample our results from a
simplified coarse meshMc solution to our target fine meshMf . First,Mf is simplified to generate
Mc . This can be accomplished using one of many high quality mesh simplification techniques. In
our implementation, we applied edge collapses using a quadric error metric [Garland and Heckbert
1997], which yields a faithful approximation. Next, we run our algorithm on Mc , resulting in a
coarse solution. Then, for each triangle tf in Mf , we find the point p in Mc that is closest to the
centroid of tf . We then assign tf to the coarse mesh face tc where p lies. Finally, we generate the
buffers forMf by replacing each face in the coarse solution by all faces assigned to it. We used an
arbitrary order among fine mesh faces associated to each tc . Since the upsampling factor is small
(2–5×), vertex locality is still preserved and there is no noticeable decrease in cache efficiency. This
can significantly reduce processing time while still achieving high quality results.

6 RUN-TIME SELECTION
At rendering time, the application must select the appropriate in-depth buffer based on the current
viewpoint. We follow an approach similar to Han and Sander [2016], using a 2D lookup table
IBid[θ ,ϕ] of sufficient resolution indexed by polar and azimuth angles of the current viewpoint
rounded to the nearest valid parameter values. In the case of sampled view triangles, a view triangle
ID is stored and the viewpoint is tested for containment against its one-ring neighborhood. Once
the view triangle is identified, its associated in-depth buffer is used.

Although this parameterization is less uniform than the subdivided icosahedron, it is only used
to store the index buffer IDs for the purpose of simplifying the lookup at runtime. Since it is a
single array lookup for the entire mesh, this lookup time is negligible.
The selected buffer is then directly rendered by the application with backface culling enabled.

Unlike Chen et al. [2012], which use plane tests in the shaders to further cull triangles, no additional
modifications or processing are required from the client rendering application.

7 RESULTS
We evaluated the performance and quality of our results in a variety of meshes ranging from
10,000 to 115,000 triangles, which are typical resolutions for real-time rendering applications. All
experiments were performed in an Intel Core i7 3.6GHz machine with 16GB RAM and an NVIDIA
GeForce GTX 770 graphics card.

Figure 3 demonstrates the importance of using a sufficiently dense sampling of the view space in
order to achieve accurate results. Note that as the number of sampled view triangle subdivisions
progressively increases, so does the quality of the results. With S[2, 2], the artifacts are imperceptible.
The accompanying video demonstrates these results for a variety of settings. We also explored
using viewpoints, view triangles, and view regions. In the case of viewpoints, unless we used an
extremely dense sampling, there were significant artifacts away from these viewpoints. As for view
triangles and view regions, the complexity of the partial order graph made it infeasible to cluster
effectively. For example, for a 10,000-triangle dragon mesh, we could not achieve results with fewer
than 200 clusters for either view triangles or view regions. Thus, for the majority of results, we
adopted the dense S[2, 2] sampled view triangle configuration.
Table 1 shows the overall results of our approach. We use the Depth-Presorted Triangle List

(DPTL)method of Chen et al. [2012] as the baseline for comparison since it is the only other approach
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Table 1. Final results of our approach on several models at varying input resolutions. Rows denoted by “↪→”
report results that are upsampled from the previous row to a higher resolution. All times are in minutes and
memory in KB. Ratio of the result of Chen et al. [2012] over ours is shown in parenthesis. For the upsampled
results, the ratios are relative to the their high resolution results.

input occ gen clustering relaxation overall statistics

model △s views time time clusters iters time clusters proc time memory ACMR PSNR IPR

bunny 10,000 S[2,2] 13.2 15.0 7 6 36.6 6 64.9(0.2×) 664(4.1×) 0.8(2.0×) 57.9 0.003
↪→ 50,000 64.9(3.5×) 3324(3.8×) 0.8(2.3×) 53.6 0.007
30,000 S[2,2] 101.4 62.0 9 8 196.7 7 360.1(0.2×) 2280(3.4×) 0.8(2.4×) 60.1 0.003
50,000 s[2,2] 262.8 158.4 9 8 777.3 8 1198.4(0.2×) 4202(3.0×) 0.7(2.6×) 61.1 0.002

dragon 10,000 S[2,2] 12.1 10.6 12 5 15.6 11 38.2(0.4×) 1092(2.8×) 0.8(2.8×) 55.0 0.004
20,000 S[2,2] 36.9 36.9 13 11 177.2 11 250.9(0.2×) 2162(2.7×) 0.7(2.9×) 59.6 0.002
↪→ 40,000 251.0(0.6×) 4324(2.6×) 0.7(2.4×) 50.6 0.010
40,000 S[2,2] 132.8 100.1 15 7 502.3 13 735.2(0.2×) 5131(2.2×) 0.7(2.4×) 59.6 0.002

feline 10,000 S[2,2] 12.5 8.6 10 5 11.3 9 32.4(0.3×) 928(3.2×) 0.8(2.1×) 55.5 0.004
↪→ 50,000 32.4(7.0×) 4642(2.8×) 0.8(2.4×) 45.5 0.018
20,000 S[2,2] 46.9 25.7 11 5 53.4 11 125.9(0.3×) 2194(2.5×) 0.7(2.4×) 58.8 0.002
50,000 S[2,2] 241.5 185.7 13 8 668.7 11 1095.9(0.2×) 5521(2.4×) 0.7(2.6×) 58.9 0.003

fandisk 10,000 S[2,2] 9.1 27.2 6 7 64.5 4 100.8(0.1×) 457(5.1×) 0.8(2.4×) 56.4 0.003
↪→ 50,000 100.9(1.6×) 2284(5.0×) 0.8(2.3×) 47.0 0.008
50,000 S[2,2] 192.2 225.0 6 7 651.7 4 1068.9(0.1×) 2305(5.0×) 0.8(2.5×) 61.9 0.001

that performs runtime selection rather than sorting and has been shown to be significantly faster
than the alternatives. The ratio of the result of DPTL over ours is reported for overall statistics.
Next we discuss each aspect of the comparison in detail.

Processing. Statistics of all processing steps are detailed in table 1, including the time breakdown
for the generation of the partial order graph, initial clustering, and relaxation. Note that a few
iterations of the relaxation process can further reduce the number of clusters after the initial
merging step. Overall, the processing time when using the dense S[2, 2] configuration becomes
significantly higher than that of DPTL (around 5–10×). However, we note that this processing only
needs to be performed once for each static model. The performance deteriorates significantly as
the mesh complexity increases beyond 50,000 triangles. The algorithm can still scale to complex
scenes with a larger number of models since the algorithm is executed independently on each mesh.
Thus, we have not explored further algorithm optimizations or a parallelized version as in DPTL.
We instead explored upsampling the order from a coarse mesh to a more detailed mesh. In this
case, our preprocessing time is significantly faster than DPTL, while still achieving high quality
rendering results when using S[2, 2].

Memory. The total memory for our approach is reported under the overall statistics. Whereas
our approach requires a larger number of clusters than DPTL, it only needs to store the index data
(we use 16 bits per index in our implementation). DPTL also stores one plane per triangle for the
plane test, thus significantly increasing the memory requirement (2.4–5.1×).

Vertex cache efficiency. We applied our novel constrained vertex cache optimization algorithm to
all in-depth buffers. We use a vertex cache size of 20 for these experiments. Note that, even with
the constraints imposed by the partial order graph, the algorithm is able to considerably reduce the
number of processed triangles, yielding results in the 0.70s. To provide a fair comparison, we also
applied our algorithm on the DPTL buffers. However, their partial order graphs are more dense
and involve more triangle duplication. As a result, their cache efficiency could not be significantly
improved and their final ACMR is consistently over 2× that of ours, incurring significantly more
vertex computation at runtime.
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S[0, 0] S[1, 0] S[2, 0] S[2, 1] S[2, 2] S[2, 2]+

Fig. 3. Error visualization for different view configurations of the dragon [10,000] and the bunny [30,000].
S[2, 2]+ denotes upsampled results from dragon [5,000] and bunny [10,000], respectively. Note that using
more subdivisions avoids significant rendering artifacts caused by incorrect ordering (red pixels).

Quality. Unlike DPTL which can render exact front-to-back orders, our view space is sampled
and therefore, away from these viewing locations, ordering errors can lead to rendering artifacts.
The average peak signal-to-noise ratio (PSNR) of the foreground pixels for a set of 900 renderings
from set of random viewpoints at 2–5× the radius of the model’s bounding sphere is approximately
55–62db (down to approximately 45–55db for upsampled results). The average incorrect pixel ratio
(IPR) is computed as the ratio of pixels with an incorrect order to the total number of foreground
pixels and ranges between 0–0.4% for our processed results (0–2% for upsampled results). We
disabled MSAA for these measurements. As discussed earlier, using densely sampled view triangles,
most of the error occurs at silhouettes and becomes unnoticeable for semi-transparent rendering
effects when viewed from all directions outside the model’s bounding volume (figures 6 and 7).
Note that the upsampling approximation can be prone to errors, especially if the coarse mesh has
resolution that is too low. Table 2 shows this trend. As we increase the coarse mesh resolution, we
get a higher quality fine mesh result. Once we reach a sufficiently high coarse mesh resolution
that captures enough surface detail, note that we generally do no suffer any significant quality
degradation as we increase the resolution of the target fine mesh.

For a more thorough set of results, please refer to the accompanying video, which shows a variety
of renderings from multiple viewpoints and using different view configurations.

Rendering time. For the runtime comparison, we first render 900 instances of the model from
multiple viewpoints using a complex shader effect and then average the results. Refer to table 3
for these rendering times. In this simple scene, we explored three combinations of shaders whose
complexity vary in order to cater to vertex-bound (vs) and fill-bound (ps) applications, as well
scenarios with expensive vertex and pixel shaders (both). Note that in-depth buffers do not require
either sorting or selection in the shaders as in DPTL. So, once the buffer is determined, it is simply
rendered directly. Furthermore, as discussed above, in-depth buffers have much better vertex
locality, which is particularly helpful for the vs scenario. As a result, we observed a speedup of
1.3–2.7× over DPTL (we use their PS rendering mode, which is the fastest and also suitable for
vertex caching).
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Table 2. Upsampling results for different coarse and
fine mesh resolutions. Consecutive rows with match-
ing resolutions are shown in bold to facilitate com-
parisons.

input overall statistics

model △s views ACMR PSNR IPR

bunny 10,000 → 50,000 S[2,2] 0.8 53.6 0.007
30,000 → 50,000 S[2,2] 0.8 58.5 0.003
30,000 → 70,000 S[2,2] 0.8 58.3 0.004

dragon 10,000 → 40,000 S[2,2] 0.8 45.0 0.020
20,000 → 40,000 S[2,2] 0.7 50.6 0.010
20,000 → 70,000 S[2,2] 0.8 51.0 0.008
20,000 → 80,000 S[2,2] 0.8 50.9 0.008
20,000 → 115,000 S[2,2] 0.8 50.8 0.009

feline 10,000 → 50,000 S[2,2] 0.8 45.5 0.018
20,000 → 50,000 S[2,2] 0.8 49.7 0.009
20,000 → 70,000 S[2,2] 0.8 48.6 0.010
20,000 → 80,000 S[2,2] 0.8 47.9 0.011
20,000 → 100,000 S[2,2] 0.8 48.6 0.011

fandisk 10,000 → 50,000 S[2,2] 0.8 46.9 0.008
30,000 → 50,000 S[2,2] 0.8 52.1 0.003
30,000 → 70,000 S[2,2] 0.8 50.7 0.005
30,000 → 90,000 S[2,2] 0.8 50.6 0.005
30,000 → 110,000 S[2,2] 0.8 50.7 0.005

Table 3. Rendering time results for the models from
table 1. All times are in miliseconds. Ratio of the
result of Chen et al. [2012] over ours is shown in
parenthesis.

input simple scene complex scene

model △s views vs ps both simple

bunny 10,000 S[2,2] 1.2(1.9×) 3.5(1.3×) 3.7(1.3×) 4.8(1.4×)
↪→ 50,000 5.4(2.2×) 4.9(1.7×) 6.4(1.9×) 8.2(1.7×)
30,000 S[2,2] 3.3(2.2×) 4.4(1.5×) 4.9(1.6×) 6.6(1.5×)
50,000 S[2,2] 5.1(2.3×) 5.0(1.7×) 6.2(2.0×) 7.6(1.7×)

dragon 10,000 S[2,2] 1.1(2.5×) 3.8(1.5×) 4.0(1.5×) 5.2(1.4×)
20,000 S[2,2] 1.9(2.6×) 4.3(1.6×) 4.7(1.6×) 5.4(1.5×)
↪→ 40,000 3.7(2.7×) 5.0(1.7×) 5.7(2.0×) 7.1(1.8×)
40,000 S[2,2] 3.9(2.6×) 5.1(1.7×) 5.8(1.9×) 7.0(1.7×)

feline 10,000 S[2,2] 1.1(2.2×) 3.2(1.4×) 3.4(1.4×) 4.9(1.3×)
↪→ 50,000 4.8(2.4×) 4.5(1.7×) 5.7(2.2×) 7.1(1.8×)
20,000 S[2,2] 2.0(2.4×) 3.6(1.5×) 3.9(1.6×) 5.3(1.6×)
50,000 S[2,2] 4.7(2.5×) 4.5(1.7×) 5.7(2.2×) 7.2(1.9×)

fandisk 10,000 S[2,2] 1.2(2.0×) 3.2(1.3×) 3.4(1.3×) 5.0(1.3×)
↪→ 50,000 5.6(2.0×) 4.6(1.7×) 6.6(1.7×) 7.6(1.6×)
50,000 S[2,2] 5.6(2.0×) 4.6(1.7×) 6.5(1.8×) 7.8(1.5×)

Rendering order discrepancies. Figure 4 shows three instances of rendering order errors. The top
row uses a semi-transparent per-pixel lighting shader, whereas the bottom row uses a simpler and
smoother depth-to-color shader where these artifacts are more clearly visible. The artifacts on the
dragon are due to the coarse view configuration (S[2,0]), the feline uses an aggressive upsampling
ratio, and the bunny shows an example of a small pixel discrepancy near an internal silhouette. As
mentioned earlier, in practical scenarios, when using a S[2,2] view configuration, such artifacts are
difficult to notice.

Complex scene. Finally, we tested our approach using the same complex room scene from DPTL.
The scene consists of a physical simulation with multiple semi-transparent dragons interacting and
colliding with one another. The right column of table 3 shows a direct rendering time comparison
to DPTL. Our approach achieves a speedup of 1.3–1.9× with no visible difference in the rendering
results. Figure 5 shows a rendered frame. For a full demonstration with a difference comparison to
the exact method of DPTL, please refer to the accompanying video.

8 CONCLUSION
In this paper, we presented a new approach for efficient front-to-back (or back-to-front) rendering
of static triangle meshes. The approach is useful to a wide range of real-time rendering applications
as it can be trivially incorporated to any application that requires depth-sorted triangles: Given
the viewpoint, a selected pre-sorted in-depth buffer is rendered. We prove that the problem of
minimizing the total number of required in-depth buffers is NP-hard and describe a heuristic that
achieves good results. We also show how to further optimize for vertex locality while respecting
the constraints imposed by the front-to-back ordering. In the future, we would like to explore
extensions to support models with bounded distortion or articulated rigid parts.

SOURCE CODE
https://github.com/hansongfang/idb
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dragon [10,000] bunny [10,000] feline [30,000→ 100,000]
S[2,0] S[2,2] S[2,2]

Fig. 4. Rendering order discrepancies due to a small number of viewpoints (left), a pixel inconsistency near an
internal silhouette (middle), and aggressive upsampling (right). Renderings use a semi-transparent per-pixel
lighting effect (top) and depth-to-color (bottom).

Fig. 5. A rendered frame from the complex room scene simulation.
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bunny [50,000] dragon [40,000] fandisk [50,000] feline [50,000]

Fig. 6. Error visualization results of our approach for a variety of models using the S[2, 2] view configuration
(top row). Renderings using a semi-transparent per-pixel lighting effect are shown below. Difference images
to ground truth are shown on top-right of each result.

bunny [30,000→
50,000]

dragon [20,000→
40,000]

fandisk [10,000→
50,000]

feline [20,000 →
50,000]

Fig. 7. Error visualization of the upsampling results using the S[2, 2] view configuration (top row). Renderings
using a semi-transparent per-pixel lighting effect are shown below. Difference images to ground truth are
shown on top-right of each result.
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