
Triangle Reordering for Reduced Overdraw in Animated Scenes

Songfang Han Pedro V. Sander
Hong Kong UST

Figure 1: Renderings of the four animated characters used in our results. The small images visualize overdraw for several key frames in the
animation (dark regions indicate overdraw). Refer to the supplemental video for a full demonstration.

Abstract

We introduce an automatic approach for optimizing the triangle
rendering order of animated meshes with the objective of reduc-
ing overdraw while maintaining good post-transform vertex cache
efficiency. Our approach is based on prior methods designed for
static meshes. We propose an algorithm that clusters the space of
viewpoints and key frames. For each cluster, we generate a trian-
gle order that exhibits satisfactory vertex cache efficiency and low
overdraw. Results show that our approach significantly improves
overdraw throughout the entire animation sequence while only re-
quiring a few index buffers. We expect that this approach will be
useful for games and other real-time rendering applications that
involve complex shading of articulated characters.

Keywords: real-time rendering, depth sorting, overdraw reduction

Concepts: •Computing methodologies→ Visibility;

1 Introduction

Advanced real-time rendering applications often involve rendering
large animated models using complex lighting and shading tech-
niques. Depending of the relative complexity between the rendered
geometry and the fragment shading algorithm, the rendering process
is often bottlenecked at either the vertex shader or fragment shader
stage. Scenes that fall into one of these categories are referred to as
vertex-bound and fill-bound scenes, respectively. Approaches have
been proposed to reorder the triangles of a mesh so as to alleviate
these bottlenecks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2016 ACM.
I3D ’16, ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, February 27-28, Redmond, WA, USA.
ISBN: 978-1-4503-4043-4/16/03 $15.00
DOI: http://dx.doi.org/10.1145/2856400.2856408

In order to reduce vertex computation, the application can leverage
the GPU’s post-transform vertex caching mechanism, which stores
the vertex shading output of a small set of recently processed vertices.
When processing a particular vertex, recomputation can be avoided if
the vertex has recently been processed by an adjacent triangle within
the same hardware unit and thus is still cached. This encourages
a triangle order with vertex reference locality (i.e., mesh triangles
that share vertices should be close to each other in the index buffer).
The average cache miss ratio (ACMR) of a particular triangle order
measures the ratio between processed vertices and rendered triangles
for a given caching scheme (usually a FIFO scheme is assumed).
Generating triangle orders that reduce ACMR results in a significant
improvement in rendering time for heavily vertex-bound scenes.

Scenes may also have very complex lighting and shading techniques,
resulting in computationally intensive fragment shaders. In this
case, reducing the number of fragments that need to be shaded
can significantly reduce rendering time. When rasterizing triangles,
GPUs apply early-Z culling, which performs depth testing prior to
fragment shading. Thus, if the triangles happen to be processed
in perfect front-to-back order, none of the occluded fragments will
need to be shaded. In the worst case, when rendering in back-to-
front order, all of the fragments need to be shaded, even those that
are completely occluded by subsequent triangles. The overdraw
ratio (OVR) of a triangle order refers to the ratio between the total
number of fragments that passed the depth test and the number of
visible fragments. An overdraw ratio of 1 is optimal and means no
overdraw.

It has been shown that for heavily vertex-bound scenes, ACMR is
directly proportional to rendering time, while for heavily fill-bound
scenes, OVR is directly proportional to rendering time [Sander et al.
2007]. An efficient triangle order has both low ACMR and low OVR.
In this paper we propose a technique that, as in Nehab et al. [2006]
and Sander et al. [2007], compromises between these two objectives.
However, unlike these previous techniques, our approach handles an-
imated meshes. Since we are addressing keyframe animations where
mesh connectivity does not change, ACMR is invariant to the anima-
tion. On the other hand, since vertices change their relative positions
over the course of the animation, OVR can be significantly affected.
Our algorithm generates a set of triangle orders that minimize OVR
over the entire animation sequence, while still maintaining a low
ACMR.

23

http://dx.doi.org/10.1145/2856400.2856408

2 Related work

Vertex caching Vertex cache optimization has been extensively
researched. Early techniques made advances by reducing bandwidth
and generating compressed data structures, such as triangle strips
(e.g., Akeley et al. [1990]; Deering [1995]; Chow [1997]). More
recent methods simply utilize the transparent caching provided by
modern GPUs and just reorder the triangles without further com-
pressing the index buffer (e.g., Hoppe [1999]; Lin and Yu [2006];
Sander et al. [2007]). These approaches directly target the post-
transform cache, where most of the vertex processing gain can be
achieved. In this paper, we do not propose new methods for improv-
ing cache efficiency, but rather directly employ the method of Sander
et al. [2007] to generate mesh patches with low ACMR. We later
use these patches in our algorithm to create orders that reduce OVR
over entire animation sequences.

Overdraw A popular strategy to reduce overdraw of fill-bound
scenes is to prime the Z-buffer by rendering the geometry without
writing to the framebuffer. On a subsequent pass, the geometry is
rendered again, but this time writing to the framebuffer and using a
less than or equal depth test. This approach ensures that only the
visible fragments are shaded. Note, however, that it doubles the
amount of vertex processing, which could be unacceptable in many
scenarios. Alternative ways to reduce overdraw include visibility
sorting and occlusion culling (e.g., Airey [1990]; Teller and Squin
[1991]; Greene et al. [1993]). Some techniques use hardware-based
occlusion queries (e.g., Hillesland et al. [2002]; Bittner et al. [2004];
Govindaraju et al. [2005]). Most of these methods either operate
at coarser levels, or require fine-granular visibility sorting. Nehab
et al. [2006] and Sander et al. [2007] take an alternative approach
of creating a single index buffer with a view-independent order
that is optimized to reduce overdraw. The approach is completely
transparent to the application, which simply directly renders this pre-
sorted buffer. Chen et al. [2012] creates set of buffers that guarantee
front-to-back order by duplicating triangles in the index buffer and
selectively drawing these triangles based on a shader test so as to
guarantee that the order of the rendered triangles is correct. While
these techniques provide good results for static meshes, they do
not address animated scenes. Our proposed technique addresses
this problem by jointly clustering sets of animation key frames and
viewpoints that can share the same index buffer.

3 Our approach

Next, we describe our approach. The algorithm first partitions the
mesh into patches that are locally optimized for reduced ACMR. It
then generates a set of index buffers that contain different orderings
of these patches. These different orders are optimized for reducing
overdraw for different keyframes and viewpoints.

3.1 Generating cache-efficient patches

We follow the fast linear clustering approach of Sander et al. [2007]
to quickly generate cache-optimized surface patches of triangles.
The basic idea is to first optimize the entire mesh to reduce ACMR,
and then break the output index buffer into contiguous triangle
sequences, or patches. The approach uses a parameter λ to regulate
the resulting ACMR. Essentially, the method traverses the order
one triangle at a time, and when the ACMR of the current patch
drops below λ, it adds a patch break and starts a new patch on the
following triangle. Refer to Sander et al. [2007] for additional
details. Lower values of λ result in lower overall ACMR, however
due to the smaller number of patch breaks, it provides less flexibility
for patch reordering to reduce overdraw.

Figure 2: The points represent the vertices from the subdivided
icosahedron that were used as viewpoints during clustering. The
colors identify their clusters.

3.2 Generating the index buffers

Next, we seek to reorder of these cache-optimized patches for over-
draw reduction.

Viewpoints We assume that the animated model may be viewed
from all directions. We first generate a set V of 162 viewpoints that
lie on a sphere enclosing the model to represent the potential viewing
directions (figure 2). The viewpoints are computed by subdividing an
icosahedron as in Nehab et al. [2006]. If the viewpoint distribution
of the target application differs significantly, a specialized set of
viewpoints can be generated.

Clustering A single order that is suitable for all animation
keyframes when viewed from any viewpoint cannot satisfactorily
reduce overdraw (see single cluster results in section 4). We instead
create k clusters of (keyframe, viewpoint) pairs that can share index
buffers. This results in a total of k index buffers. At runtime, the
rendering algorithm picks the appropriate one based on the current
viewpoint and keyframe.

We are given a set of viewpoints V and a set of keyframes F . Our
approach must consider every possible keyframe viewed from every
possible direction. Since |V | = 162 and 30 ≤ |F | ≤ 70 for our
example animations, the total number of nodes (i.e., keyframe and
viewpoint combinations) is in the thousands.

We seek to find a partitioning of all nodes that yields low overdraw
with a small number of index buffers. Our approach is based on
k-means clustering [MacQueen 1967]. The algorithm alternates
between two steps, one which assigns nodes to clusters, and one
which computes a new index buffer for each cluster.

Bootstrapping The algorithm is initialized by choosing k random
nodes and creating an initial index buffer for each of them by sorting
the patches in front-to-back order (i.e., by increasing distance be-
tween the patch centroid and the node viewpoint). These k buffers
represent our initial k clusters. The choice of k is discussed in the
results section.

Step 1: Node assignment Each node is assigned to the cluster
whose index buffer results in the lowest overdraw when used to

24

1

1.05

1.1

1.15

1.2

1 2 3 4 5 6

O
VR

λ = 0.7 λ = 0.85 λ = 1 λ = 1.5 λ = 2 λ = 3

Figure 3: Adjusting λ provides a tradeoff between vertex caching
and overdraw, as shown here for the six animations of the Ganfaul
model.

render that keyframe from that particular viewpoint. This is ac-
complished by rendering the scene using each of the k candidate
index buffers and using hardware occlusion queries to read back the
overdraw results.

Step 2: Index buffer computation For each cluster, we compute
a new triangle order with reduced average overdraw for all of its
currently assigned nodes. We accomplish this by creating an order
that roughly sorts the patches from front-to-back. Sorting the patches
from front-to-back is straightforward if we only consider one node
(i.e., a single keyframe from a single viewpoint). However, in this
case, the order must be suitable for all the nodes assigned to the
cluster. We accomplish this by integrating the distances between
viewpoints and patch centroids over all of the nodes in the cluster.
We then create a single global order that sorts the patches in front-to-
back order based on their integrated patch distances. Patches whose
triangles are all backfacing are ignored in the distance computation,
and the integrated distance is normalized based on the number of
nodes in which it is visible.

3.3 Runtime selection

When rendering the model, the target application has to choose
between one of the k index buffers. This is accomplished by using
a lookup table indexed by keyframe and viewpoint. For simplicity,
we index viewpoints based on polar and azimuth angles (θ, φ) (we
use values from the closest original viewpoint when populating the
table). While this distribution is less uniform than the subdivided
icosahedron, it is only used to store the index buffer IDs for the
purpose of simplifying the lookup at runtime. The time required
for the lookup is negligible since it is only a single lookup for the
entire model. The lookup parameters f , θ, and φ are rounded to the
nearest valid parameter values.

4 Results

In this section, we present results of our approach. Our results use
four models undergoing a set of six complex animations that have
between 30 and 70 keyframes. These are representative of animated
characters often found in games and other real-time applications.
Refer to the supplemental video for a demonstration of these an-
imations. Table 1 shows preprocessing times for creating index
buffers for each animation (labeled A-F), as well as for a joint set
of buffers that is optimized for all animations. Note that we did
not heavily optimize the preprocessing computation for speed, since
this is done offline and only once after modeling. We focused on
reducing overdraw for higher runtime performance on pixel bound

1

1.08

1.16

1.24

1.32

1.4

motion A motion E motion F

O
VR

1 cluster

motion B

2 clusters

motion C

3 clusters

motion D

5 clusters 7 clusters 10 clusters

Figure 4: The number of clusters trades off memory (one index
buffer per cluster) and overdraw, as shown here for the six anima-
tions of the Ganfaul model.

scenes.

Choice of λ As mentioned earlier, rendering time has been shown
to be directly proportional to ACMR for vertex-bound scenes, and
OVR for pixel-bound scenes [Sander et al. 2007]. The algorithm
trades off these objectives by controlling the desired ACMR through
the λ parameter. Figure 3 shows how the overdraw ratio is affected
by the choice of λ. We have found that setting λ in the range of
0.75 − 0.95 provides a good balance between ACMR and OVR
objectives for our animated scenes. For the remaining results in this
paper, we use λ = 0.85. In addition, we also provide results for
λ = 3, which is the extreme case where vertex cache performance is
not taken into account and results are solely optimized for reduced
overdraw.

Choice of number of clusters Figure 4 shows results for differ-
ent number of clusters for the Ganfaul model. Increasing the number
of clusters reduces overdraw at the expense of memory to store the
additional index buffers. We have found that using more than five
clusters only yields modest ovedraw reduction for the models and
animations that we tested. Thus, for the remaining results in the
paper, we use five clusters.

Overall results Table 2 shows the statistics of each of our four
models. Results are averaged over all keyframes and over a set of 300
random viewpoints within a radius three times that of the object’s
bounding sphere. The original results use a single index buffer that is
optimized solely for reduced ACMR. It has a low memory footprint
since it only requires one buffer, however it results in an order with
high overdraw. The tipsify results use the state-of-the-art algorithm
for static scenes described in Sander et al. [2007] applied to each
individual frame. It reduces overdraw significantly, but requires
between 30-70 index buffers, depending on the animation, making
its direct use impractical. Our single set of results uses five clusters
for each single animation, thus requiring only five index buffers per
animation and our cluster-based approach further reduces overdraw
significantly for both λ = 0.85 and λ = 3. Our joint set of results
optimize for the same five clusters for all frames in all animations.
It therefore does slightly worse than the single animation results. As
described earlier, the choice of λ affects the resulting ACMR. With
λ = 0.85, ACMR is kept under 0.9, while for λ = 3, the order is
solely optimized for overdraw, thus ACMR is significantly sacrificed
to achieve this additional reduction in overdraw. Figure 5 further
breaks down the results for each animation (labeled motion A-F).
Note that the improvements of our algorithm are consistent over a
variety of different character animations and brings the overdraw
ratio very close to the optimal value of 1.

25

Table 1: Preprocessing times (in seconds) for all combinations of models, motions, and parameter settings.

Model λ = 0.85 λ = 3

A B C D E F joint A B C D E F joint

Ganfaul 420 245 365 204 229 213 2507 648 248 369 350 286 273 2445
Kachujin 382 333 320 277 295 189 1727 395 230 417 248 206 196 2639
Maw 442 396 604 293 235 284 3420 558 464 501 433 293 285 3126
Nightshade 384 369 362 495 296 366 2128 479 245 450 308 221 262 2282

Rendering times We conducted experiments to verify the de-
pendency between OVR and rendering time [Sander et al. 2007].
We used the Kachujin model with α = 0.85 in a heavily pixel
bound scene. We noticed the improvement in rendering time closely
matched the improvement in OVR (∼18-20%). With an inexpen-
sive shader that simply outputs the color, the improvement was less
significant (∼10%).

5 Conclusion

We introduced a new algorithm to efficiently reorder triangles of ani-
mated models in order to reduce overdraw. To our knowledge, this is
the first technique that generates such optimized triangle orders for
animations. By using a small number of index buffers, the proposed
approach produces triangle orders that have significantly lower over-
draw even when compared to techniques that are optimized for static
meshes. We presented results that balance between vertex cache and
overdraw performance as well as results that are solely optimized
for reduced overdraw. The approach is very general and widely
applicable to arbitrary animations in a variety of real-time rendering
applications.

Acknowledgments

This work was partly supported by Hong Kong GRF grants #619509
and #618513. The models used are from Mixamo.

References
AIREY, J. M. 1990. Increasing update rates in the building walk-

through system with automatic model-space subdivision and po-
tentially visible set calculations. PhD thesis, UNC-CH.

AKELEY, K., HAEBERLI, P., and BURNS, D. 1990. The tomesh.c
program. Available on SGI computers and developers toolbox
CD.

BITTNER, J., WIMMER, M., and HARALD PIRINGER, W. P. 2004.
Coherent hierarchical culling: Hardware occlusion queries made
useful. Computer Graphics Forum, 23(3):615–624.

CHEN, G., SANDER, P. V., NEHAB, D., YANG, L., and HU, L.
2012. Depth-presorted triangle lists. ACM Transactions on Graph-
ics (Proc. of ACM SIGGRAPH Asia 2012), 31(6):160:1–160:9.

CHOW, M. M. 1997. Optimized geometry compression for real-time
rendering. In Visualization’97, 347–354, 559.

DEERING, M. 1995. Geometry compression. In Proc. of ACM
SIGGRAPH 95, 13–20.

GOVINDARAJU, N. K., HENSON, M., LIN, M. C., and MANOCHA,
D. 2005. Interactive visibility ordering and transparency compu-
tations among geometric primitives in complex environments. In
I3D, 49–56.

GREENE, N., KASS, M., and MILLER, G. 1993. Hierarchical
z-buffer visibility. In Proc. of ACM SIGGRAPH 93, 231–238.

HILLESLAND, K., A., B. S., D., L., and MANOCHA. 2002. Fast
and simple occlusion culling using hardware-based depth queries.
Technical Report TR02-039, Department of Computer Science,
UNC-CH.

HOPPE, H. 1999. Optimization of mesh locality for transparent
vertex caching. In Proc. of ACM SIGGRAPH 99, 269–276.

LIN, G. and YU, T. P.-Y. 2006. An improved vertex caching scheme
for 3d mesh rendering. TVCG, 12(4):640–648.

MACQUEEN, J. 1967. Some methods for classification and analysis
of multivariate observations. In Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability, Volume
1: Statistics, 281–297.

NEHAB, D., BARCZAK, J., and SANDER, P. V. 2006. Triangle
order optimization for graphics hardware computation culling. In
I3D, 207–211.

SANDER, P. V., NEHAB, D., and BARCZAK, J. 2007. Fast trian-
gle reordering for vertex locality and reduced overdraw. ACM
Transactions on Graphics (Proc. of ACM SIGGRAPH 2007), 26
(3):89.

TELLER, S. J. and SQUIN, C. H. 1991. Visibility preprocessing
for interactive walkthroughs. In Proc. of ACM SIGGRAPH 91,
61–70.

26

Table 2: Average cache miss ratio (ACMR) and overdraw ratio (OVR) results for several character animations. We contrast our method with a
triangle order that only considers vertex caching (original), and with the approach for static meshes of Sander et al. [2007], which applies the
algorithm to each frame independently, resulting in 30-70 index buffers per animation (tipsify). We present our results using a separate set of
five index buffers per motion (single) and with a joint set of five index buffers for all motions combined (joint).

Model # tris Original Tipsify (λ = 0.85) Tipsify (λ = 3) Single (λ = 0.85) Single (λ = 3) Joint (λ = 0.85) Joint (λ = 3)

ACMR OVR ACMR OVR ACMR OVR ACMR OVR ACMR OVR ACMR OVR ACMR OVR

Ganfaul 13,801 0.676 1.355 0.869 1.298 2.939 1.213 0.862 1.144 2.715 1.055 0.860 1.144 2.684 1.064
Kachujin 12,610 0.645 1.310 0.903 1.172 2.896 1.122 0.891 1.068 2.617 1.027 0.887 1.102 2.570 1.030
Maw 13,908 0.619 1.380 0.879 1.253 2.918 1.166 0.860 1.101 2.696 1.038 0.859 1.109 2.675 1.044
Nightshade 12,996 0.656 1.302 0.862 1.172 2.930 1.112 0.854 1.068 2.643 1.024 0.854 1.071 2.612 1.027

1

1.08

1.16

1.24

1.32

1.4

motion A motion B motion C motion D motion E motion F

O
VR

Ganfaul

original tipsify (λ=0.85) tipsify (λ=3) ours (λ=0.85) ours (λ=3)

1

1.08

1.16

1.24

1.32

1.4

motion A motion B motion C motion D motion E motion F

O
VR

Maw

original tipsify (λ=0.85) tipsify (λ=3) ours (λ=0.85) ours (λ=3)

1

1.08

1.16

1.24

1.32

motion A motion B motion C motion D motion E motion F

O
VR

Kachujin

original tipsify (λ=0.85) tipsify (λ=3) ours (λ=0.85) ours (λ=3)

1

1.08

1.16

1.24

1.32

motion A motion B motion C motion D motion E motion F

O
VR

Nightshade

original tipsify (λ=0.85) tipsify (λ=3) ours (λ=0.85) ours (λ=3)

Figure 5: Average overdraw ratio for different animations of the four models from Table 2.

27

